STRESS




Find a Therapist (City or Postcode)

Christopher Bergland

The Athlete's Way

The Size and Connectivity of the Amygdala Predicts Anxiety

A larger amygdala is linked to a higher anxiety risk in children and adults.

Posted Nov 20, 2013

Prolonged stress and anxiety during childhood increase the risk of someone developing anxiety disorders and depression later in life. In the breakthrough study, the researchers at Stanford found that the larger the amygdala—and the stronger its connections with other regions of the brain responsible for perception and the regulation of emotion—the greater the amount of anxiety a child was experiencing. This study was published online in Biological Psychiatry.

article continues after advertisement

A Larger Amygdala Can Equate to Higher Anxiety in Childhood

The amygdala is an evolutionarily primitive part of the brain located deep in the temporal lobe. It comprises several subregions associated with different aspects of perceiving, learning, and regulating emotions. Studies of laboratory animals placed in an environment causing chronic stress have determined that the animals' amygdalae grew additional synapses and that this synaptic connectivity resulted in chronic anxiety.

The Stanford researchers acknowledge that some anxiety is an important emotional and biological reaction to both 'eustress' (good stress) and 'distress' (bad stress) at all stages of life. However, sustained anxiety can lead to disabling conditions such as phobiapost-traumatic stress disorder (PTSD) and generalized anxiety disorder. Studies of adults suffering from anxiety disorders have shown that they also possess enlarged, highly connected amygdalae.

Qin used magnetic resonance imaging to measure the size of the various subregions of the amygdala and functional MRI to measure the connectivity of those regions to other areas of the brain. "The basolateral amygdala had stronger functional connections with multiple areas of the neocortex in children with higher anxiety levels," Qin said.

The Stanford researchers have “identified four functional neocortical systems that were affected. One of the systems deals with perception, another with attention and vigilance, a third with reward and motivation, and the fourth with detection of salient emotional stimuli and regulation of emotional responses. All four of these core systems are impacted by childhood anxiety," Qin said. 

The researchers emphasize that “these findings do not mean that every young child with an enlarged and highly connected amygdala will necessarily go on to develop a mood disorder,” said Vinod Menon, PhD, professor of psychiatry and behavioral sciences and senior author of the study. "We are not at a point where we can use these findings to predict the likelihood of a child developing mood and anxiety disorders as an adult, but it is an important step in the identification of young children at risk for clinical anxiety," Menon said.

Menon added that they were surprised that alterations to the structure and connectivity of the amygdala were so significant in the children with higher levels of anxiety, given both the young age of the children and the fact that their anxiety levels were still too low to be considered clinical.

article continues after advertisement

Participants in the study included 76 children ranging in ages 7 to 9. "For the cognitive emotional assessments to be reliable, 7 years old is about as young as a child can be," said Menon. "But the changes to the amygdala may have started earlier."

The parents of the children in the study filled out the Childhood Behavior Checklist, a standard measure of a child's general cognitive, social and emotional well-being. All the children in the study were typically developing, with no history of neurological or psychiatric disorders, and were not using medication. None of the children in the study were experiencing so much anxiety in their daily lives that they could be considered clinically anxious.

Menon concludes, “The study provides important new insights into the developmental origins of anxiety. Understanding the influence of childhood anxiety on specific amygdala circuits, as identified in the study, could aid in the early identification and treatment of children at risk for anxiety disorders.”

What Is the Link Between Synesthesia andAutism?

Interestingly, another study about neuroplasticity and the importance of "Neural Darwinism” (the pruning of certain neural connections as part of healthy development) was released on November 19, 2013 by researchers at Cambridge University who found a direct link between synesthesia and autism.

article continues after advertisement

Synesthesia (also spelled synaesthesia) involves people experiencing a 'mixing of the senses.' For example, someone would see colors when they hear sounds, link specific letters to colors, or report that musical notes evoke different tastes... People diagnosed with Autism Spectrum Disorder (ASD) often struggle with social relationships and communication, and tend have unusually narrow interests and be resistant to change. Both of these conditions result from atypical connections between brain areas that are not usually wired together.

In Synesthesia this means that a sensation in one sensory channel triggers a perception in another channel. Researchers believe that ASD may also be related to atypical brain wiring that creates an over-connectivity of certain neurons which causes the person to hyper-focus on small details while finding it difficult to keep the big picture in mind.

This new study, published in the journal Molecular Autism, found that people with autism are more likely to also have synesthesia. The Cambridge University scientists found that whereas synesthesia usually occurs in 7.2% of the general population, it occurred in 18.9% of people with autism sprectrum disorders.

The scientists had a hunch that autism and synesthesia were both related to neural over-connectivity, and therefore that synesthesia might be disproportionately common in autism. They tested for this and found their hypothesis to be correct.

Professor Baron-Cohen said: "I have studied both autism and synaesthesia for over 25 years and I had assumed that one had nothing to do with the other. These findings will re-focus research to examine common factors that drive brain development in these traditionally very separate conditions. An example is the mechanism 'apoptosis,' the natural pruning that occurs in early development, where we are programmed to lose many of our infant neural connections. In both autism and synaesthesia apoptosis may not occur at the same rate, so that these connections are retained beyond infancy."

Donielle Johnson, who carried out the study as part of her Master's degree in Cambridge, said: "People with autism report high levels of sensory hyper-sensitivity. This new study goes one step further in identifying synaesthesia as a sensory issue that has been overlooked in this population. This has major implications for educators and clinicians designing autism-friendly learning environments."

Conclusion: The Importance of Organic Neural Darwinism

These two new studies show that there is a window of opportunity with toddlers and young children to create daily activities and environments that fortify and nourish the neural networks that will optimize a child’s mental and cognitive well-being. Making efforts to prune brain connections linked to anxiety or ASD and encouraging them to atrophy through daily activities early in a child's life may be a way to treat these conditions without pharmaceuticals. That is one goal of The Athlete's Way.

I write extensively about the role of neural darwinism in creating an optimal mindset and breaking habits of thinking and behavior in my book The Athlete’s Way. Please follow this link for direct page references and excerpts to read more about neural darwinism and the importance of pruning neural networks throughout a lifespan. 

When people think of neuroplasticity—especially through the lens of positive psychology and improved cognitive function—the focus is often on building stronger neural connections between brain areas. However, it’s equally important that we continually break apart certain neural networks that are linked to negative things like: rumination, catastrophizing, being cynical, compulsive, anxious.... These habits of thinking become ingrained at a neural level and must be broken apart.

It is a terrifying prospect to imagine a 'Brave New World' dystopia where a parent might take a young child who seems to have anxiety for an fMRI, and after identifying a larger than average amygdala prescribing a medication or a surgical procedure to 'fix' the "problem." Again, the researchers from Stanford emphasize that not everyone with a larger amygdala will have high anxiety. The brain is very mysterious and complex and it's important to proceed with caution and use common sense. 

When my father was training to be a neurosurgeon, people were still performing lobotomies as a form of “psychosurgery” to correct psychiatric disorders. The practice was extremely disturbing to him, obviously. In a lobotomy, a surgeon cuts or scrapes away most of the connections to the prefrontal cortex, often with an ice pick and chisel placed under the upper eye lid. Clearly this practice had harrowing side-effects.

As neuroscientists in the 21st century begin to understand more about brain connectivity and well-being, I believe that it’s important to focus on lifestyle choices and daily habits as a prescriptive, and not pharmaceuticals. It is possible to nourish brain areas and connections that will maximize someone’s potential and take him or her ‘north-of-zero’ while gently pruning the neural connections that take anyone ‘south-of-zero' without costly drugs with negative side effects.

Bulking up certain brain areas while shrinking others—and strengthening some neural connections while pruning others—offers a lot of promise for taking someone 'north-of-zero.' It also offers some potential drawbacks. Every human being's neural tapestry is quirky and unique. There is no ‘one-size-fits’ all formula for optimizing the size and connectivity of brain regions.

Scientists (as well as writers like myself) should be careful about creating an unintended backlash or stigma associated with what might be misperceived as 'short-comings' or 'flaws' in terms of somone's brain volume, symmetry or connectivity.

If you'd like to read more on this topic please check out my Psychology Today blog posts:

"Musical Training Optimizes Brain Function"


"Hand-Eye Coordination Improves Cognitive and Social Skills"


"Decoding the Secrets of Brain Connectivity"


"The Neuroscience of Post-Traumatic Stress Disorder"


"Video Gaming Can Increase Brain Size and Connectivity"


"Childhood Creativity Linked to Innovation in Adulthood"


"Loving Touch is Key to Healthy Brain Development"


"The Neuroscience of Calming a Baby"


"Gesturing Engages All Four Brain Hemispheres"


"How Is the Cerebellum Linked to Autism Spectrum Disorders?"


article continues after advertisement

About the Author

Christopher Bergland is a world-class endurance athlete, coach, author, and political activist.

 

 

 

Online: 

www.theathletesway.com


More Posts

High Levels of Exercise May Be OK for Middle-Aged Hearts

Self-Compassion Calms and Soothes Fight-or-Flight Responses

The Human Cerebellum May Protect Itself Against Alzheimer’s


Most Popular

The Sign of a Lasting Relationship


What We Get Wrong About Psychopaths


How Narcissists Conduct Psychological Warfare


Allowing Dogs to Sniff Helps Them Think Positively


Mindfulness Could Be a Powerful Painkiller


More Like This

Social Interactions and Brain Cell Connections


Early Brain Over-Growth Is Indicative of Autism as Predicted


A DNA Marker For Paranoia As Predicted


Hyper- or Hypoconnectivity in Autism?


Are ADHD and Dementia Preventable Diseases?


Find a Therapist

Get the help you need from a therapist near you–a FREE service from Psychology Today.

Cities:

Atlanta, GA


Austin, TX


Baltimore, MD


Boston, MA


Brooklyn, NY


Charlotte, NC


Chicago, IL


Columbus, OH


Dallas, TX


Denver, CO


Detroit, MI


Houston, TX


Indianapolis, IN


Jacksonville, FL


Las Vegas, NV


Los Angeles, CA


Louisville, KY


Memphis, TN


Miami, FL


Milwaukee, WI


Minneapolis, MN


Nashville, TN


New York, NY


Oakland, CA


Omaha, NE


Philadelphia, PA


Phoenix, AZ


Pittsburgh, PA


Portland, OR


Raleigh, NC


Sacramento, CA


Saint Louis, MO


San Antonio, TX


San Diego, CA


San Francisco, CA


San Jose, CA


Seattle, WA


Tucson, AZ


Washington, DC


Are you a Therapist?


Get Listed Today


About


Privacy


Terms


Psychology Today © 2019 Sussex Publishers, LLC


Comments

Popular Posts